Unità di misura di Planck derivate

Le unità di misura di Planck derivate sono quelle unità di misura derivate dalla combinazione delle unità di Planck fondamentali, come la lunghezza, la massa e il tempo.

Tabella

Unità derivate di Planck approssimate
Dimensione Formula Espressione Valore, nel SI approssimata
Versione di Lorentz–Heaviside[1] Versione gaussiana[2][3][4][5] Valore nel SI

Lorentz-Heaviside

Valore nel SI

Gaussiana

Proprietà meccanico-fisiche
Area di Planck Area [ L ] 2 {\displaystyle \left[L\right]^{2}} l P 2 = 4 π G c 3 {\displaystyle l_{\text{P}}^{2}={\frac {4\pi \hbar G}{c^{3}}}} l P 2 = G c 3 {\displaystyle l_{\text{P}}^{2}={\frac {\hbar G}{c^{3}}}} 3 , 282688 10 69 m 2 {\displaystyle 3,282688\cdot 10^{-69}\;m^{2}} 2 , 612280 10 70 m 2 {\displaystyle 2,612280\cdot 10^{-70}\;m^{2}}
Volume di Planck Volume [ L ] 3 {\displaystyle \left[L\right]^{3}} l P 3 = 64 π 3 3 G 3 c 9 {\displaystyle l_{\text{P}}^{3}={\sqrt {\frac {64\pi ^{3}\hbar ^{3}G^{3}}{c^{9}}}}} l P 3 = ( G c 3 ) 3 2 = 3 G 3 c 9 {\displaystyle l_{\text{P}}^{3}=\left({\frac {\hbar G}{c^{3}}}\right)^{\frac {3}{2}}={\sqrt {\frac {\hbar ^{3}G^{3}}{c^{9}}}}} 1 , 880808 10 103 m 3 {\displaystyle 1,880808\cdot 10^{-103}\;m^{3}} 4 , 222111 10 105 m 3 {\displaystyle 4,222111\cdot 10^{-105}\;m^{3}}
Velocità di Planck Velocità [ L ] [ T ] 1 {\displaystyle \left[L\right]\left[T\right]^{-1}} v P = l P t P = c {\displaystyle v_{\text{P}}={\frac {l_{\text{P}}}{t_{\text{P}}}}=c} 299.792.458 m s {\displaystyle 299.792.458\;{\frac {m}{s}}}
Planck Angolare Radiante [ L ] [ L ] 1 {\displaystyle \left[L\right]\left[L\right]^{-1}\to } adimensionale θ P = l P l P = 1 {\displaystyle \theta _{\text{P}}={\frac {l_{\text{P}}}{l_{\text{P}}}}=1} 1 r a d {\displaystyle 1\;\mathrm {rad} }
Planck steradiante Angolo solido [ L ] 2 [ L ] 2 {\displaystyle \left[L\right]^{2}\left[L\right]^{-2}\to } adimensionale θ P 2 = l P 2 l P 2 = 1 {\displaystyle \theta _{\text{P}}^{2}={\frac {l_{\text{P}}^{2}}{l_{\text{P}}^{2}}}=1} 1 s r {\displaystyle 1\;\mathrm {sr} }
Quantità di moto di Planck Quantità di moto [ L ] [ M ] [ T ] 1 {\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-1}} m P c = l P = c 3 4 π G {\displaystyle m_{\text{P}}c={\frac {\hbar }{l_{\text{P}}}}={\sqrt {\frac {\hbar c^{3}}{4\pi G}}}} m P c = l P = c 3 G {\displaystyle m_{\text{P}}c={\frac {\hbar }{l_{\text{P}}}}={\sqrt {\frac {\hbar c^{3}}{G}}}} 1 , 840608 N s {\displaystyle 1,840608\;\mathrm {N} \cdot s} 6 , 524785 k g m s {\displaystyle 6,524785\;kg\cdot {\frac {m}{s}}}
Energia di Planck Energia [ M ] [ L ] 2 [ T ] 2 {\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}} E P = m P v P 2 = t P = c 5 4 π G {\displaystyle E_{\text{P}}=m_{\text{P}}v_{\text{P}}^{2}={\frac {\hbar }{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{4\pi G}}}} E P = m P c 2 = t P = c 5 G {\displaystyle E_{\text{P}}={{m}_{\text{P}}}{{c}^{2}}={\frac {\hbar }{{t}_{\text{P}}}}={\sqrt {\frac {\hbar {{c}^{5}}}{G}}}} 5.518004 10 8 J {\displaystyle 5.518004\cdot 10^{8}\;\mathrm {J} } 153 , 278 k W h {\displaystyle 153,278\;k\mathrm {W} \cdot h}

3 , 444067 10 18 G e V {\displaystyle 3,444067\cdot 10^{18}Ge\mathrm {V} }

1 , 956081 10 9 J {\displaystyle 1,956081\cdot 10^{9}\mathrm {J} } 543 , 356 k W h {\displaystyle 543,356\;k\mathrm {W} \cdot h}

1 , 220890 10 28 e V {\displaystyle 1,220890\cdot 10^{28}e\mathrm {V} }

Forza di Planck Forza [ M ] [ L ] [ T ] 2 {\displaystyle \left[M\right]\left[L\right]\left[T\right]^{-2}} F P = m P a P = m P c t P = c 4 4 π G {\displaystyle F_{\text{P}}=m_{\text{P}}a_{\text{P}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{4\pi G}}} F P = E P l P = l P t P = c 4 G {\displaystyle {{F}_{\text{P}}}={\frac {{E}_{\text{P}}}{{l}_{\text{P}}}}={\frac {\hbar }{{{l}_{\text{P}}}{{t}_{\text{P}}}}}={\frac {{c}^{4}}{G}}} 9 , 630908 10 42 N {\displaystyle 9,630908\cdot 10^{42}\;\mathrm {N} } 1 , 210256 10 44 N {\displaystyle 1,210256\cdot 10^{44}\;\mathrm {N} }
Potenza di Planck Potenza [ M ] [ L ] 2 [ T ] 3 {\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-3}} P P = E P t P = t P 2 = c 5 4 π G {\displaystyle P_{\text{P}}={\frac {E_{\text{P}}}{t_{\text{P}}}}={\frac {\hbar }{t_{\text{P}}^{2}}}={\frac {c^{5}}{4\pi G}}} P P = E P t P = c 5 G {\displaystyle P_{\text{P}}={\frac {E_{\text{P}}}{t_{\text{P}}}}={\frac {c^{5}}{G}}} 2 , 887274 10 51 W {\displaystyle 2,887274\cdot 10^{51}\;\mathrm {W} } 3 , 628255 10 52 W {\displaystyle 3,628255\cdot 10^{52}\;\mathrm {W} }
Intensità radiante di Planck Intensità angolare [ L ] 2 [ M ] [ T ] 3 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-3}} P P θ P 2 = c 5 4 π G {\displaystyle {\frac {P_{\text{P}}}{\theta _{\text{P}}^{2}}}={\frac {c^{5}}{4\pi G}}} ι P = P P θ P 2 = c 5 G {\displaystyle \iota _{\text{P}}={\frac {P_{\text{P}}}{\theta _{\text{P}}^{2}}}={\frac {c^{5}}{G}}} 2 , 887274 10 51 W s r {\displaystyle 2,887274\cdot 10^{51}\;{\frac {\mathrm {W} }{\mathrm {sr} }}} 3 , 628255 10 52 W s r {\displaystyle 3,628255\cdot 10^{52}\;{\frac {\mathrm {W} }{\mathrm {sr} }}}
Intensità di Planck Intensità [ M ] [ T ] 3 {\displaystyle \left[M\right]\left[T\right]^{-3}} i P = P P l P 2 = c 8 16 π 2 G 2 {\displaystyle i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{16\pi ^{2}\hbar G^{2}}}} i P = ρ P E c = P P l P 2 = c 8 G 2 {\displaystyle i_{\text{P}}=\rho _{\text{P}}^{E}c={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{\hbar G^{2}}}} 8 , 795455 10 119 W m 2 {\displaystyle 8,795455\cdot 10^{119}\;{\frac {\mathrm {W} }{m^{2}}}} 1 , 388923 10 122 W m 2 {\displaystyle 1,388923\cdot 10^{122}\;{\frac {\mathrm {W} }{m^{2}}}}
Densità di Planck Densità [ M ] [ L ] 3 {\displaystyle \left[M\right]\left[L\right]^{-3}} ρ P = m P l P 3 = t P l P 5 = c 5 16 π 2 G 2 {\displaystyle \rho _{\text{P}}={\frac {m_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {\hbar \,t_{\text{P}}}{l_{\text{P}}^{5}}}={\frac {c^{5}}{16\pi ^{2}\hbar G^{2}}}} ρ P = m P l P 3 = c 5 G 2 {\displaystyle \rho _{\text{P}}={\frac {m_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{5}}{\hbar G^{2}}}} 3 , 264346 10 94 k g m 3 {\displaystyle 3,264346\cdot 10^{94}\;{\frac {kg}{m^{3}}}} 5 , 154849 10 96 k g m 3 {\displaystyle 5,154849\cdot 10^{96}\;{\frac {kg}{m^{3}}}}
Densità energetica di Planck Densità di energia [ L ] 1 [ M ] [ T ] 2 {\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}} u P = E P l P 3 = c 7 16 π 2 G 2 {\displaystyle u_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}} u P = E P l P 3 = c 7 G 2 {\displaystyle u_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{7}}{\hbar G^{2}}}} 2 , 933848 10 111 J m 3 {\displaystyle 2,933848\cdot 10^{111}\;{\frac {\mathrm {J} }{m^{3}}}} 4 , 632947 10 113 J m 3 {\displaystyle 4,632947\cdot 10^{113}\;{\frac {\mathrm {J} }{m^{3}}}}
Frequenza angolare di Planck Frequenza [ T ] 1 {\displaystyle \left[T\right]^{-1}} ω P = θ P t P = c 5 4 π G {\displaystyle \omega _{\text{P}}={\frac {\theta _{P}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{4\pi \hbar G}}}} ω P = θ P t P = c 5 G {\displaystyle \omega _{P}={\frac {\theta _{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{\hbar G}}}\;} 5 , 232458 10 42 r a d s {\displaystyle 5,232458\cdot 10^{42}{\frac {\mathrm {rad} }{s}}} 1 , 854858 10 43 r a d s {\displaystyle 1,854858\cdot 10^{43}{\frac {\mathrm {rad} }{s}}}
Accelerazione angolare di Planck Accelerazione angolare [ T ] 2 {\displaystyle \left[T\right]^{-2}} ω P t P = t P 2 = c 5 4 π G {\displaystyle {\frac {\omega _{\text{P}}}{t_{\text{P}}}}=t_{\text{P}}^{-2}={\frac {c^{5}}{4\pi \hbar G}}} ω P t P = t P 2 = c 5 G {\displaystyle {\frac {\omega _{\text{P}}}{t_{\text{P}}}}=t_{\text{P}}^{-2}={\frac {c^{5}}{\hbar G}}} 2 , 737862 10 85 r a d s 2 {\displaystyle 2,737862\cdot 10^{85}\;{\frac {\mathrm {rad} }{s^{2}}}} 3 , 440498 10 86 r a d s 2 {\displaystyle 3,440498\cdot 10^{86}\;{\frac {\mathrm {rad} }{s^{2}}}}
Accelerazione di Planck Accelerazione [ L ] [ T ] 2 {\displaystyle \left[L\right]\left[T\right]^{-2}} a P = v P t P = c 7 4 π G {\displaystyle a_{\text{P}}={\frac {v_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{7}}{4\pi \hbar G}}}} a P = c t P = c 7 G {\displaystyle a_{\text{P}}={\frac {c}{t_{\text{P}}}}={\sqrt {\frac {c^{7}}{\hbar G}}}} 1 , 568652 10 51 m s 2 {\displaystyle 1,568652\cdot 10^{51}\;{\frac {m}{s^{2}}}} 5 , 560726 10 51 m s 2 {\displaystyle 5,560726\cdot 10^{51}\;{\frac {m}{s^{2}}}}
Momento inerziale di Planck Momento di inerzia [ L ] 2 [ M ] {\displaystyle \left[L\right]^{2}\left[M\right]} m P l P 2 = 4 π 3 G c 5 {\displaystyle m_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {4\pi \hbar ^{3}G}{c^{5}}}}} m P l P 2 = 3 G c 5 {\displaystyle m_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {\hbar ^{3}G}{c^{5}}}}} 2 , 01544 10 77 k g m 2 {\displaystyle 2,01544\cdot 10^{-77}kg\cdot m^{2}} 5 , 68546 10 78 k g m 2 {\displaystyle 5,68546\cdot 10^{-78}kg\cdot m^{2}}
Momento angolare di Planck Momento angolare [ L ] 2 [ M ] [ T ] 1 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}} P = m P l P 2 ω P = l P m P c = E P t P = {\displaystyle \hbar _{\text{P}}=m_{\text{P}}l_{\text{P}}^{2}\omega _{\text{P}}=l_{\text{P}}m_{\text{P}}c=E_{\text{P}}t_{\text{P}}=\hbar } 1.054571817 10 34 J s {\displaystyle 1.054571817\ldots \cdot 10^{-34}\;\mathrm {J} s}
Coppia di Planck Torque [ L ] 2 [ M ] [ T ] 2 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}} τ P = F P l P = P t P = c 5 4 π G {\displaystyle \tau _{\text{P}}=F_{\text{P}}l_{\text{P}}={\frac {\hbar _{P}}{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{4\pi G}}}} τ P = F P l P = P t P = c 5 G {\displaystyle \tau _{\text{P}}=F_{\text{P}}l_{\text{P}}={\frac {\hbar _{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{G}}}} 5 , 518004 10 8 N m {\displaystyle 5,518004\cdot 10^{8}\mathrm {N} \cdot m} 1 , 956081 10 9 N m {\displaystyle 1,956081\cdot 10^{9}\mathrm {N} \cdot m}
Pressione di Planck Pressione [ M ] [ L ] 1 [ T ] 2 {\displaystyle \left[M\right]\left[L\right]^{-1}\left[T\right]^{-2}} p P = F P l P 2 = l P 3 t P = c 7 16 π 2 G 2 {\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {\hbar }{l_{\text{P}}^{3}t_{\text{P}}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}} p P = F P l P 2 = c 7 G 2 {\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}\;} 2 , 933848 10 111 P a {\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} } 4 , 632947 10 113 P a {\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Tensione superficiale di Planck Tensione superficiale [ M ] [ T ] 2 {\displaystyle \left[M\right]\left[T\right]^{-2}} F P l P = c 11 64 π 3 G 3 {\displaystyle {\frac {F_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {c^{11}}{64\pi ^{3}\hbar G^{3}}}}} F P l P = c 11 G 3 {\displaystyle {\frac {F_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {c^{11}}{\hbar G^{3}}}}} 1 , 680941 10 77 N m {\displaystyle 1,680941\cdot 10^{77}{\frac {\mathrm {N} }{m}}} 7 , 488024 10 78 N m {\displaystyle 7,488024\cdot 10^{78}{\frac {\mathrm {N} }{m}}}
Forza superficiale universale di Planck Forza superficiale universale [ L ] 1 [ M ] [ T ] 2 {\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}} p P = F P l P 2 = c 7 16 π 2 G 2 {\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}} p P = F P l P 2 = c 7 G 2 {\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}} 2 , 933848 10 111 P a {\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} } 4 , 632947 10 113 P a {\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Durezza di indentazione di Planck Durezza di indentazione [ L ] 1 [ M ] [ T ] 2 {\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}} p P = F P l P 2 = c 7 16 π 2 G 2 {\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}} p P = F P l P 2 = c 7 G 2 {\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}} 2 , 933848 10 111 P a {\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} } 4 , 632947 10 113 P a {\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Durezza assoluta di Planck Durezza Assoluta

[ L ] 1 [ M ] [ T ] 2 {\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}

a F P = 9 , 80665 4 π G c 4 {\displaystyle {\frac {a_{\oplus }}{F_{\text{P}}}}={\frac {_{9,80665}\,4\pi G}{c^{4}}}} a F P = 9 , 80665 G c 4 {\displaystyle {\frac {a_{\oplus }}{F_{\text{P}}}}={\frac {_{9,80665}G}{c^{4}}}} 1 , 01825 10 42 k g f {\displaystyle 1,01825\cdot 10^{-42}kg\cdot f} 8 , 10296 10 44 k g f {\displaystyle 8,10296\cdot 10^{-44}kg\cdot f}
Flusso di massa di Planck Rapporto di flusso di massa [ M ] [ T ] 1 {\displaystyle \left[M\right]\left[T\right]^{-1}} t r s 1 = m P t P = c 2 π r s = c 3 4 π G {\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {c}{2\pi r_{s}}}={\frac {c^{3}}{4\pi G}}} t r s 1 = m P t P = 2 c r s = c 3 G {\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {2c}{r_{s}}}={\frac {c^{3}}{G}}} 3 , 212525 10 34 k g s {\displaystyle 3,212525\cdot 10^{34}\;{\frac {kg}{s}}} 4 , 036978 10 35 k g s {\displaystyle 4,036978\cdot 10^{35}\;{\frac {kg}{s}}}
Viscosità di Planck viscosità dinamica [ L ] 1 [ M ] [ T ] 1 {\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-1}} η P = P P t P = c 9 64 π 3 G 3 {\displaystyle \eta _{\text{P}}=P_{\text{P}}t_{\text{P}}={\sqrt {\frac {c^{9}}{64\pi ^{3}\hbar G^{3}}}}} η P = P P t P = c 9 G 3 {\displaystyle \eta _{\text{P}}=P_{\text{P}}t_{\text{P}}={\sqrt {\frac {c^{9}}{\hbar G^{3}}}}} 5 , 607015 10 68 P a s {\displaystyle 5,607015\cdot 10^{68}\mathrm {Pa} \cdot s} 2 , 497736 10 70 P a s {\displaystyle 2,497736\cdot 10^{70}\mathrm {Pa} \cdot s}
Viscosità cinematica di Planck viscosità cinematica [ L ] 2 [ T ] 1 {\displaystyle \left[L\right]^{2}\left[T\right]^{-1}} η P ρ P = l P 2 t P = 4 π G c {\displaystyle {\frac {\eta _{\text{P}}}{\rho _{\text{P}}}}={\frac {l_{\text{P}}^{2}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \hbar G}{c}}}} η P ρ P = l P 2 t P = G c {\displaystyle {\frac {\eta _{\text{P}}}{\rho _{\text{P}}}}={\frac {l_{\text{P}}^{2}}{t_{\text{P}}}}={\sqrt {\frac {\hbar G}{c}}}} 1 , 717653 10 27 m 2 s {\displaystyle 1,717653\cdot 10^{-27}{\frac {m^{2}}{s}}} 4 , 845411 10 27 m 2 s {\displaystyle 4,845411\cdot 10^{-27}{\frac {m^{2}}{s}}}
Portata volumetrica di Planck Rapporto di flusso volumetrico [ L ] 3 [ T ] 1 {\displaystyle \left[L\right]^{3}\left[T\right]^{-1}} Q P = l P 3 t P = l P 2 v P = 4 π G c 2 {\displaystyle Q_{\text{P}}={\frac {l_{\text{P}}^{3}}{t_{\text{P}}}}=l_{\text{P}}^{2}v_{\text{P}}={\frac {4\pi \hbar G}{c^{2}}}} Q P = l P 3 t P = l P 2 v P = G c 2 {\displaystyle Q_{\text{P}}={\frac {l_{\text{P}}^{3}}{t_{\text{P}}}}=l_{\text{P}}^{2}v_{\text{P}}={\frac {\hbar \,G}{c^{2}}}} 9 , 841252 10 61 m 3 s {\displaystyle 9,841252\cdot 10^{-61}\;{\frac {m^{3}}{s}}} 7 , 831419 10 62 m 3 s {\displaystyle 7,831419\cdot 10^{-62}\;{\frac {m^{3}}{s}}}
Proprietà elettromagnetiche
Corrente di Planck Corrente elettrica [ Q ] [ T ] 1 {\displaystyle \left[Q\right]\left[T\right]^{-1}} I P = q P t P = ε 0 c 6 4 π G {\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{6}}{4\pi G}}}} I P = q P t P = 4 π ε 0 c 6 G {\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{6}}{G}}}} 2 , 768399 10 24 A {\displaystyle 2,768399\cdot 10^{24}\;\mathrm {A} } 3 , 478873 10 25 A {\displaystyle 3,478873\cdot 10^{25}\;\mathrm {A} }
Forza magnetomotiva di Planck Corrente elettrica [ Q ] [ T ] 1 {\displaystyle \left[Q\right]\left[T\right]^{-1}} I P = q P t P = ε 0 c 6 4 π G {\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{6}}{4\pi G}}}} I P = q P t P = 4 π ε 0 c 6 G {\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{6}}{G}}}} 2 , 768399 10 24 A {\displaystyle 2,768399\cdot 10^{24}\;\mathrm {A} } 3 , 478873 10 25 A {\displaystyle 3,478873\cdot 10^{25}\;\mathrm {A} }
Tensione di Planck Tensione [ M ] [ L ] 2 [ T ] 2 [ Q ] 1 {\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}\left[Q\right]^{-1}} V P = E P q P = c 4 4 π ε 0 G {\displaystyle V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}} 1 , 042940 10 27 V {\displaystyle 1,042940\cdot 10^{27}\;\mathrm {V} }
Forza elettromotiva di Planck Tensione [ M ] [ L ] 2 [ T ] 2 [ Q ] 1 {\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}\left[Q\right]^{-1}} ϕ P = V P = E P q P = c 4 4 π ε 0 G {\displaystyle \phi _{\text{P}}=V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}} 1.042 940 10 27 V {\displaystyle 1.042\;940\cdot 10^{27}\;\mathrm {V} }
Resistenza di Planck Resistenza elettrica [ M ] [ L ] 2 [ T ] 1 [ Q ] 2 {\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-1}\left[Q\right]^{-2}} Z P = V P I P = q P 2 = 1 ε 0 c = μ 0 c = Z 0 {\displaystyle Z_{\text{P}}={\frac {V_{\text{P}}}{I_{\text{P}}}}={\frac {\hbar }{q_{\text{P}}^{2}}}={\frac {1}{\varepsilon _{0}c}}=\mu _{0}c=Z_{0}} Z P = V P I P = 1 4 π ε 0 c = Z 0 4 π {\displaystyle Z_{\text{P}}={\frac {V_{\text{P}}}{I_{\text{P}}}}={\frac {1}{4\pi \varepsilon _{0}c}}={\frac {Z_{0}}{4\pi }}} 376 , 730 Ω {\displaystyle 376,730\;\Omega } 29 , 9792458 Ω {\displaystyle 29,9792458\;\Omega }
Conduttanza di Planck Conduttanza elettrica [ L ] 2 [ M ] 1 [ T ] [ Q ] 2 {\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]\left[Q\right]^{2}} G P = 1 R P = ε 0 c = 1 Z 0 {\displaystyle G_{\text{P}}={\frac {1}{R_{\text{P}}}}=\varepsilon _{0}c={\frac {1}{Z_{0}}}} G P = 1 R P = 4 π ε 0 c = 4 π Z 0 {\displaystyle G_{\text{P}}={\frac {1}{R_{\text{P}}}}=4\pi \varepsilon _{0}c={\frac {4\pi }{Z_{0}}}} 0 , 002654 S {\displaystyle 0,002654\;\mathrm {S} } 0 , 0333564095 S {\displaystyle 0,0333564095\;\mathrm {S} }
Capacità elettrica di Planck Capacità elettrica [ L ] 2 [ M ] 1 [ T ] 2 [ Q ] 2 {\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]^{2}\left[Q\right]^{2}} C P = q P V P = l P k e = 4 π ε 0 2 G c 3 {\displaystyle {{C}_{\text{P}}}={\frac {{q}_{\text{P}}}{{V}_{\text{P}}}}={\frac {{l}_{P}}{{k}_{e}}}={\sqrt {\frac {4{\pi }\varepsilon _{0}^{2}\hbar G}{{c}^{3}}}}} C P = q P V P = l P k e = 16 π 2 ε 0 2 G c 3 {\displaystyle {{C}_{\text{P}}}={\frac {{q}_{\text{P}}}{{V}_{\text{P}}}}={\frac {{l}_{P}}{{k}_{e}}}={\sqrt {\frac {16{{\pi }^{2}}\varepsilon _{0}^{2}\hbar G}{{c}^{3}}}}} 5 , 072985 10 46 F {\displaystyle 5,072985\cdot 10^{-46}\;\mathrm {F} } 1 , 798326 10 45 F {\displaystyle 1,798326\cdot 10^{-45}\;\mathrm {F} }
Permittività di Planck

(Costante elettrica)

Permittività elettrica [ L ] 3 [ M ] 1 [ T ] 2 [ Q ] 2 {\displaystyle \left[L\right]^{-3}\left[M\right]^{-1}\left[T\right]^{2}\left[Q\right]^{2}} ε P = C P l P = q P V P l P = F P V P 2 = ε 0 {\displaystyle \varepsilon _{\text{P}}={\frac {C_{\text{P}}}{l_{\text{P}}}}={\frac {q_{\text{P}}}{V_{\text{P}}l_{\text{P}}}}={\frac {F_{\text{P}}}{V_{\text{P}}^{2}}}=\varepsilon _{0}} ε P = C P l P = F P V P 2 = 1 k e = 4 π ε 0 {\displaystyle \varepsilon _{\text{P}}={\frac {C_{\text{P}}}{l_{\text{P}}}}={\frac {F_{\text{P}}}{V_{\text{P}}^{2}}}={\frac {1}{k_{\text{e}}}}=4\pi \varepsilon _{0}} 8 , 854187813 10 12 F m {\displaystyle 8,854187813\cdot 10^{-12}{\frac {\mathrm {F} }{m}}} 1 , 11265006 10 10 F m {\displaystyle 1,11265006\cdot 10^{-10}{\frac {\mathrm {F} }{m}}}
Permeabilità di Planck

(Costante magnetica)

Permeabilità magnetica [ L ] [ M ] [ Q ] 2 {\displaystyle \left[L\right]\left[M\right]\left[Q\right]^{-2}} μ P = L P l P = ϕ P B l P = 1 ε 0 c 2 = μ 0 {\displaystyle \mu _{\text{P}}={\frac {L_{\text{P}}}{l_{\text{P}}}}={\frac {{\phi }_{\text{P}}^{B}}{l_{\text{P}}}}={\frac {1}{\varepsilon _{0}c^{2}}}=\mu _{0}} μ P = L P l P = V P I m P = 1 4 π ε 0 c 2 = μ 0 4 π {\displaystyle \mu _{\text{P}}={\frac {L_{\text{P}}}{l_{\text{P}}}}={\frac {V_{\text{P}}}{{I_{m}}_{\text{P}}}}={\frac {1}{4\pi \,\varepsilon _{0}c^{2}}}={\frac {\mu _{0}}{4\pi }}} 1 , 25663706212 μ H m {\displaystyle 1,25663706212{\frac {\mathrm {\mu H} }{m}}} 10 , 0000000055 μ H m {\displaystyle 10,0000000055{\frac {\mathrm {\mu H} }{m}}}
Induttanza elettrica di Planck Induttanza [ L ] 2 [ M ] [ Q ] 2 {\displaystyle \left[L\right]^{2}\left[M\right]\left[Q\right]^{-2}} L P = E P I P = m P l P 2 q P 2 = 4 π G ε 0 2 c 7 {\displaystyle L_{\text{P}}={\frac {E_{\text{P}}}{I_{\text{P}}}}={\frac {m_{\text{P}}l_{\text{P}}^{2}}{q_{\text{P}}^{2}}}={\sqrt {\frac {4\pi \hbar G}{\varepsilon _{0}^{2}c^{7}}}}} L P = E P I P 2 = m P l P 2 q P 2 = G 16 π 2 ε 0 2 c 7 {\displaystyle L_{\text{P}}={\frac {E_{\text{P}}}{I_{\text{P}}^{2}}}={\frac {m_{\text{P}}l_{\text{P}}^{2}}{q_{\text{P}}^{2}}}={\sqrt {\frac {G\hbar }{16\pi ^{2}\varepsilon _{0}^{2}c^{7}}}}} 7 , 199871 10 41 H {\displaystyle 7,199871\cdot 10^{-41}\mathrm {H} } 1 , 61625518 10 42 H {\displaystyle 1,61625518\cdot 10^{-42}\mathrm {H} }
Resistività elettrica di Planck Resistività elettrica [ L ] 3 [ M ] [ T ] 1 [ Q ] 2 {\displaystyle \left[L\right]^{3}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-2}} Z P ρ = Z P l P = t P k e = 4 π G ε 0 2 c 5 {\displaystyle Z_{\text{P}}^{\rho }=Z_{\text{P}}l_{\text{P}}=t_{\text{P}}k_{\text{e}}={\sqrt {\frac {4\pi \hbar G}{\varepsilon _{0}^{2}c^{5}}}}} Z P ρ = Z P l P = t P k e = G 16 π 2 ε 0 2 c 5 {\displaystyle Z_{\text{P}}^{\rho }=Z_{\text{P}}l_{\text{P}}=t_{\text{P}}k_{\text{e}}={\sqrt {\frac {\hbar G}{16\pi ^{2}\varepsilon _{0}^{2}c^{5}}}}} 2 , 15847 10 32 Ω m {\displaystyle 2,15847\cdot 10^{-32}\Omega \cdot m} 4 , 84541 10 34 Ω m {\displaystyle 4,84541\cdot 10^{-34}\Omega \cdot m}
Conduttività elettrica di Planck Conduttività elettrica [ L ] 3 [ M ] 1 [ T ] [ Q ] 2 {\displaystyle \left[L\right]^{-3}\left[M\right]^{-1}\left[T\right]\left[Q\right]^{2}} σ P = 1 Z P ρ = ε 0 2 c 5 4 π G {\displaystyle \sigma _{\text{P}}={\frac {1}{Z_{\text{P}}^{\rho }}}={\sqrt {\frac {\varepsilon _{0}^{2}c^{5}}{4\pi \hbar G}}}} σ P = 1 Z P ρ = 16 π 2 ε 0 2 c 5 G {\displaystyle \sigma _{\text{P}}={\frac {1}{Z_{\text{P}}^{\rho }}}={\sqrt {\frac {16\pi ^{2}\varepsilon _{0}^{2}c^{5}}{\hbar G}}}} 4 , 632918 10 31 S m {\displaystyle 4,632918\cdot 10^{31}{\frac {\mathrm {S} }{m}}} 2 , 063809 10 33 S m {\displaystyle 2,063809\cdot 10^{33}{\frac {\mathrm {S} }{m}}}
Densità di carica di Planck Densità di carica [ L ] 3 [ Q ] {\displaystyle \left[L\right]^{-3}\left[Q\right]} ρ e P = q P l P 3 = ε 0 c 10 64 π 3 2 G 3 {\displaystyle {\rho _{e}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {\varepsilon _{0}c^{10}}{64\pi ^{3}\hbar ^{2}G^{3}}}}} ρ e P = q P l P 3 = 4 π ε 0 c 10 2 G 3 {\displaystyle {\rho _{e}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{10}}{\hbar ^{2}G^{3}}}}} 2 , 813056 10 86 C m 3 {\displaystyle 2,813056\cdot 10^{86}{\frac {\mathrm {C} }{m^{3}}}} 4 , 442200 10 86 C m 3 {\displaystyle 4,442200\cdot 10^{86}{\frac {\mathrm {C} }{m^{3}}}}
Forza del campo elettrico di Planck Campo elettrico

[ L ] [ M ] [ T ] 2 [ Q ] 1 {\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-2}\left[Q\right]^{-1}}

E P = F P q P = c 7 16 π 2 ε 0 G 2 {\displaystyle {\bf {E}}_{\text{P}}={\frac {F_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{7}}{16\pi ^{2}\varepsilon _{0}\hbar G^{2}}}}} E P = F P q P = c 7 4 π ε 0 G 2 {\displaystyle {\bf {E}}_{\text{P}}={\frac {F_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{7}}{4\pi \varepsilon _{0}\hbar G^{2}}}}} 1 , 820306 10 61 V m {\displaystyle 1,820306\cdot 10^{61}{\frac {\mathrm {V} }{m}}} 6 , 452817 10 61 V m {\displaystyle 6,452817\cdot 10^{61}{\frac {\mathrm {V} }{m}}}
Forza del campo magnetico di Planck Campo magnetico

[ L ] 1 [ T ] 1 [ Q ] {\displaystyle \left[L\right]^{-1}\left[T\right]^{-1}\left[Q\right]}

H P = I P l P = ε 0 c 9 16 π 2 G 2 {\displaystyle {\bf {H}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{9}}{16\pi ^{2}\hbar G^{2}}}}} H P = I P l P = 4 π ε 0 c 9 G 2 {\displaystyle {\bf {H}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{9}}{\hbar G^{2}}}}} 4 , 831855 10 58 A m {\displaystyle 4,831855\cdot 10^{58}{\frac {\mathrm {A} }{m}}} 2 , 152428 10 60 A m {\displaystyle 2,152428\cdot 10^{60}{\frac {\mathrm {A} }{m}}}
Induzione elettrica di Planck Corrente di spostamento [ L ] 2 [ T ] 1 [ Q ] {\displaystyle \left[L\right]^{-2}\left[T\right]^{-1}\left[Q\right]} D P = q P l P 2 = ε 0 c 7 16 π 2 G 2 {\displaystyle {\bf {D}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{2}}}={\sqrt {\frac {\varepsilon _{0}c^{7}}{16\pi ^{2}\hbar G^{2}}}}} D P = q P l P 2 = 4 π ε 0 c 7 G 2 {\displaystyle {\bf {D}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{2}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{7}}{\hbar G^{2}}}}} 1 , 611733 10 50 C m 2 {\displaystyle 1,611733\cdot 10^{50}{\frac {\mathrm {C} }{m^{2}}}} 7 , 179727 10 51 C m 2 {\displaystyle 7,179727\cdot 10^{51}{\frac {\mathrm {C} }{m^{2}}}}
Induzione magnetica di Planck Campo magnetico [ M ] [ T ] 1 [ Q ] 1 {\displaystyle \left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}} B P = F P l P I P = c 5 16 π 2 ε 0 G 2 {\displaystyle {\bf {B}}_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}I_{\text{P}}}}={\sqrt {\frac {c^{5}}{16\pi ^{2}\varepsilon _{0}\hbar G^{2}}}}} B P = F P l P I P = q P l P 2 = c 5 4 π ε 0 G 2 {\displaystyle {\bf {B}}_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}I_{\text{P}}}}={\frac {\hbar }{q_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{5}}{4\pi \varepsilon _{0}\hbar G^{2}}}}} 6 , 071888 10 52 T {\displaystyle 6,071888\cdot 10^{52}\;\mathrm {T} } 2 , 152428 10 53 T {\displaystyle 2,152428\cdot 10^{53}\;\mathrm {T} }
Flusso elettrico di Planck Flusso magnetico [ L ] 2 [ M ] [ T ] 1 [ Q ] 1 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}} ϕ P E = E P l P 2 = ϕ P l P = c ε 0 {\displaystyle {\phi }_{\text{P}}^{E}={\bf {E}}_{\text{P}}l_{\text{P}}^{2}=\phi _{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar c}{\varepsilon _{0}}}}} ϕ P E = E P l P 2 = ϕ P l P = c 4 π ε 0 {\displaystyle {\phi }_{\text{P}}^{E}={\bf {E}}_{\text{P}}l_{\text{P}}^{2}=\phi _{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar c}{4\pi \varepsilon _{0}}}}} 5 , 975498 10 8 V m {\displaystyle 5,975498\cdot 10^{-8}\mathrm {V} \cdot m} 1 , 685657 10 8 V m {\displaystyle 1,685657\cdot 10^{-8}\mathrm {V} \cdot m}
Flusso magnetico di Planck Flusso magnetico [ L ] 2 [ M ] [ T ] 1 [ Q ] 1 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}} ϕ P B = B P l P 2 = A P l P = ε 0 c {\displaystyle {\phi }_{\text{P}}^{B}={\bf {B}}_{\text{P}}l_{\text{P}}^{2}={\bf {A}}_{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar }{\varepsilon _{0}c}}}} ϕ P B = E P I P = A P l P = q P = 4 π ε 0 c {\displaystyle {\phi }_{\text{P}}^{B}={\frac {E_{\text{P}}}{I_{\text{P}}}}={\bf {A}}_{\text{P}}l_{\text{P}}={\frac {\hbar }{q_{\text{P}}}}={\sqrt {\frac {\hbar }{4\pi \varepsilon _{0}c}}}} 1 , 993211 10 16 W b {\displaystyle 1,993211\cdot 10^{-16}\,\mathrm {Wb} } 5 , 622746 10 17 W b {\displaystyle 5,622746\cdot 10^{-17}\;\mathrm {Wb} }
Potenziale elettrico di Planck Tensione [ L ] 2 [ M ] [ T ] 2 [ Q ] 1 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[Q\right]^{-1}} ϕ P = V P = E P q P = c 4 4 π ε 0 G {\displaystyle \phi _{\text{P}}=V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}} 1 , 042940 10 27 V {\displaystyle 1,042940\cdot 10^{27}\;\mathrm {V} }
Potenziale magnetico di Planck Corrente magnetica [ L ] [ M ] [ T ] 1 [ Q ] 1 {\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}} A P = E P q m P = F P I P = V P v P = B P l P = q P l P = c 2 4 π ε 0 G {\displaystyle {{\bf {A}}_{\text{P}}}={\frac {{E}_{\text{P}}}{{{q}_{m}}_{\text{P}}}}={\frac {{F}_{\text{P}}}{{I}_{\text{P}}}}={\frac {{V}_{\text{P}}}{{v}_{\text{P}}}}={{\bf {B}}_{\text{P}}}{{l}_{\text{P}}}={\frac {\hbar }{{{q}_{\text{P}}}{{l}_{\text{P}}}}}={\sqrt {\frac {{c}^{2}}{4\pi {{\varepsilon }_{0}}G}}}} 3 , 478873 10 18 T m {\displaystyle 3,478873\cdot 10^{18}\;\mathrm {T} \cdot m}
Densità di corrente di Planck Densità di corrente elettrica [ L ] 2 [ T ] 1 [ Q ] {\displaystyle \left[L\right]^{-2}\left[T\right]^{-1}\left[Q\right]} J P = I P l P 2 = ρ e P v P = ε 0 c 12 64 π 3 2 G 3 {\displaystyle {\bf {J}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}^{2}}}={{\rho }_{e}}_{\text{P}}v_{\text{P}}={\sqrt {\frac {\varepsilon _{0}c^{12}}{64\pi ^{3}\hbar ^{2}G^{3}}}}} J P = I P l P 2 = ρ e P v P = 4 π ε 0 c 12 2 G 3 {\displaystyle {\bf {J}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}^{2}}}={{\rho }_{e}}_{\text{P}}v_{\text{P}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{12}}{\hbar ^{2}G^{3}}}}} 8 , 433329 10 92 A m 2 {\displaystyle 8,433329\cdot 10^{92}\;{\frac {\mathrm {A} }{m^{2}}}} 1 , 331738 10 95 A m 2 {\displaystyle 1,331738\cdot 10^{95}\;{\frac {\mathrm {A} }{m^{2}}}}
Momento elettrico di Planck Dipolo elettrico

[ L ] [ Q ] {\displaystyle \left[L\right]\left[Q\right]}

d P = q P l P = 4 π ε 0 2 G c 2 {\displaystyle {d}_{\text{P}}=q_{\text{P}}l_{\text{P}}={\sqrt {\frac {4\pi \varepsilon _{0}\hbar ^{2}G}{c^{2}}}}} 3 , 031361 10 53 C m {\displaystyle 3,031361\cdot 10^{-53}\;\mathrm {C} \cdot m}
Momento magnetico di Planck Dipolo magnetico

[ L ] 2 [ T ] 1 [ Q ] {\displaystyle \left[L\right]^{2}\left[T\right]^{-1}\left[Q\right]}

μ d P = q m P l P = I P l P 2 = 4 π ε 0 2 G {\displaystyle {\mu _{d}}_{\text{P}}={q_{m}}_{\text{P}}l_{\text{P}}=I_{\text{P}}l_{\text{P}}^{2}={\sqrt {4\pi \varepsilon _{0}\hbar ^{2}G}}} 9 , 087791 10 45 J T {\displaystyle 9,087791\cdot 10^{-45}\;{\frac {\mathrm {J} }{\mathrm {T} }}}
Monopolo magnetico di Planck Carica magnetica [ L ] [ T ] 1 [ Q ] {\displaystyle \left[L\right]\left[T\right]^{-1}\left[Q\right]} q m P = q P v P = F P B P = ε 0 c 3 {\displaystyle {{q}_{m}}_{\text{P}}=q_{\text{P}}v_{P}={\frac {F_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {{{\varepsilon }_{0}}\hbar {{c}^{3}}}}} q m P = q P v P = 4 π μ 0 ϕ P B = 4 π ε 0 c 3 {\displaystyle {{q}_{m}}_{\text{P}}=q_{\text{P}}v_{P}={\frac {4\pi }{\mu _{0}}}\phi _{\text{P}}^{B}={\sqrt {4\pi {{\varepsilon }_{0}}\hbar {{c}^{3}}}}} 1.586147 10 10 N T {\displaystyle 1.586147\cdot 10^{-10}{\frac {\mathrm {N} }{\mathrm {T} }}} 5.622746 10 10 A m {\displaystyle 5.622746\cdot 10^{-10}\mathrm {A} \cdot m}
Corrente magnetica di Planck Corrente magnetica [ L ] [ T ] 2 [ Q ] {\displaystyle \left[L\right]\left[T\right]^{-2}\left[Q\right]} I m P = q m P t P = q P a P = I P v P = ε 0 c 8 4 π G {\displaystyle {I_{m}}_{\text{P}}={\frac {{q_{m}}_{\text{P}}}{t_{\text{P}}}}={q_{\text{P}}}{a_{\text{P}}}={I_{\text{P}}}{v_{\text{P}}}={\sqrt {\frac {\varepsilon _{0}c^{8}}{4\pi G}}}} I m P = q m P t P = q P a P = 4 π ε 0 c 8 G {\displaystyle {I_{m}}_{\text{P}}={\frac {{q_{m}}_{\text{P}}}{t_{\text{P}}}}={q_{\text{P}}}{a_{\text{P}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{8}}{G}}}} 8 , 29945 10 32 V m H {\displaystyle 8,29945\cdot 10^{32}{\frac {\mathrm {V} \cdot m}{\mathrm {H} }}} 1 , 04294 10 34 W T m {\displaystyle 1,04294\cdot 10^{34}{\frac {\mathrm {W} }{\mathrm {T} \cdot m}}}
Densità di corrente magnetica di Planck Corrente magnetica [ L ] 1 [ T ] 2 [ Q ] {\displaystyle \left[L\right]^{-1}\left[T\right]^{-2}\left[Q\right]} I m P l P 2 = J P v P = I P l P t P = ε 0 c 14 64 π 3 2 G 3 {\displaystyle {\frac {{I_{m}}_{\text{P}}}{l_{\text{P}}^{2}}}={\bf {J}}_{\text{P}}v_{\text{P}}={\frac {{I}_{\text{P}}}{l_{\text{P}}t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{14}}{64\pi ^{3}\hbar ^{2}G^{3}}}}} I m P l P 2 = J P v P = I P l P t P = 4 π ε 0 c 14 2 G 3 {\displaystyle {\frac {{I_{m}}_{\text{P}}}{l_{\text{P}}^{2}}}={\bf {J}}_{\text{P}}v_{\text{P}}={\frac {{I}_{\text{P}}}{l_{\text{P}}t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{14}}{\hbar ^{2}G^{3}}}}} 2 , 52825 10 101 V m H {\displaystyle 2,52825\cdot 10^{101}{\frac {\mathrm {V} }{m\cdot \mathrm {H} }}} 3 , 99245 10 103 V m H {\displaystyle 3,99245\cdot 10^{103}{\frac {\mathrm {V} }{m\cdot \mathrm {H} }}}
Carica specifica di Planck carica specifica [ M ] 1 [ Q ] {\displaystyle \left[M\right]^{-1}\left[Q\right]} q r s = q P m P = 2 π r s μ 0 = G k e = 4 π ε 0 G {\displaystyle q_{r_{\text{s}}}={\frac {q_{\text{P}}}{m_{\text{P}}}}={\sqrt {\frac {2\pi {r_{\text{s}}}}{\mu _{0}}}}={\sqrt {\frac {G}{k_{e}}}}={\sqrt {4\pi \varepsilon _{0}G}}} 8.617517 10 11 H z T {\displaystyle 8.617517\cdot 10^{-11}\;{\frac {\mathrm {Hz} }{\mathrm {T} }}}
Monopolo specifica di Planck[non chiaro] carica magnetica specifica [ L ] [ T ] 1 [ M ] 1 [ Q ] {\displaystyle \left[L\right]\left[T\right]^{-1}\left[M\right]^{-1}\left[Q\right]} q r s c = q P c m P = a P B P = 4 π ε 0 c 2 G {\displaystyle q_{r_{\text{s}}}c={\frac {q_{\text{P}}c}{m_{\text{P}}}}={\frac {a_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {4\pi \varepsilon _{0}c^{2}G}}} q r s c = q P c m P = a P B P = 4 π G μ 0 {\displaystyle q_{r_{\text{s}}}c={\frac {q_{\text{P}}c}{m_{\text{P}}}}={\frac {a_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {\frac {4\pi G}{\mu _{0}}}}} 0 , 0258347 m s 2 T {\displaystyle 0,0258347{\frac {m}{s^{2}\cdot \mathrm {T} }}} 0 , 0258347 m s 2 T {\displaystyle 0,0258347{\frac {m}{s^{2}\cdot \mathrm {T} }}}
Proprietà termodinamiche
Temperatura di Planck in 2π Temperatura [ Θ ] {\displaystyle \left[\Theta \right]} Θ P 2 π = 2 π Θ P = 2 π E P k B = π c 5 G k B 2 {\displaystyle {\Theta }_{\text{P}}^{_{2\pi }}=2\pi {\Theta _{\text{P}}}={\frac {2\pi E_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\pi \hbar c^{5}}{G{k_{\text{B}}^{2}}}}}} Θ P 2 π = 2 π Θ P = 2 π m P c 2 k B = π c 5 G k B 2 {\displaystyle \Theta _{\text{P}}^{_{2\pi }}=2\pi {\Theta _{\text{P}}}={\frac {2\pi m_{\text{P}}c^{2}}{k_{\text{B}}}}={\sqrt {\frac {\pi \hbar c^{5}}{Gk_{\text{B}}^{2}}}}} 2 , 511185 10 32 K {\displaystyle 2,511185\cdot 10^{32}\mathrm {K} } 8 , 901917 10 32 K {\displaystyle 8,901917\cdot 10^{32}\mathrm {K} }
Entropia di Planck Entropia [ L ] 2 [ M ] [ T ] 2 [ Θ ] 1 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}} S P = E P Θ P = k B {\displaystyle S_{\text{P}}={\frac {E_{\text{P}}}{\Theta _{\text{P}}}}=k_{\text{B}}} 1 , 380649 10 23 J K {\displaystyle 1,380649\cdot 10^{-23}{\frac {\mathrm {J} }{\mathrm {K} }}}
Entropia di Planck in 2 π Entropia [ L ] 2 [ M ] [ T ] 2 [ Θ ] 1 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}} S 2 π P = E P 2 π Θ P = k B 2 π {\displaystyle {S_{2\pi }}_{\text{P}}={\frac {E_{\text{P}}}{2\pi \Theta _{\text{P}}}}={\frac {k_{\text{B}}}{2\pi }}} 2 , 197371 10 24 J K {\displaystyle 2,197371\cdot 10^{-24}{\frac {\mathrm {J} }{\mathrm {K} }}}
Coefficiente di dilatazione termica di Planck Coefficiente di dilatazione termica [ Θ ] 1 {\displaystyle \left[\Theta \right]^{-1}} α V P = 1 Θ P = k B E P = 4 π G k B 2 c 5 {\displaystyle {\alpha _{_{V}}}_{\text{P}}={\frac {1}{\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{E_{\text{P}}}}={\sqrt {\frac {4\pi G{k_{\text{B}}}^{2}}{\hbar c^{5}}}}} α V P = 1 Θ P = k B E P = G k B 2 c 5 {\displaystyle {\alpha _{_{V}}}_{\text{P}}={\frac {1}{\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{E_{\text{P}}}}={\sqrt {\frac {G{k_{\text{B}}}^{2}}{\hbar c^{5}}}}} 2 , 502080 10 33 1 K {\displaystyle 2,502080\cdot 10^{-33}{\frac {1}{\mathrm {K} }}} 7 , 058238 10 33 1 K {\displaystyle 7,058238\cdot 10^{-33}{\frac {1}{\mathrm {K} }}}
Capacità termica di Planck Capacità termica - Entropia [ L ] 2 [ M ] [ T ] 2 [ Θ ] 1 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}} C P Θ = E P Θ P = k B {\displaystyle {C}_{\text{P}}^{\Theta }={\frac {E_{\text{P}}}{\Theta _{\text{P}}}}=k_{\text{B}}} 1 , 380649 10 23 J K {\displaystyle 1,380649\cdot 10^{-23}{\frac {\mathrm {J} }{\mathrm {K} }}}
Calore specifico di Planck Calore specifico [ L ] 2 [ T ] 2 [ Θ ] 1 {\displaystyle \left[L\right]^{2}\left[T\right]^{-2}\left[\Theta \right]^{-1}} c p P = E P m P Θ P = k B m P = 4 π G k B 2 c {\displaystyle {c_{p}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{m_{\text{P}}}}={\sqrt {\frac {4\pi Gk_{\text{B}}^{2}}{\hbar c}}}} c p P = E P m P Θ P = k B m P = G k B 2 c {\displaystyle {c_{p}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{m_{\text{P}}}}={\sqrt {\frac {Gk_{\text{B}}^{2}}{\hbar c}}}} 2 , 24876 10 15 J k g K {\displaystyle 2,24876\cdot 10^{-15}{\frac {\mathrm {J} }{kg\cdot \mathrm {K} }}} 6 , 34363 10 16 J k g K {\displaystyle 6,34363\cdot 10^{-16}{\frac {\mathrm {J} }{kg\cdot \mathrm {K} }}}
Calore volumetrico di Planck Calore volumetrico [ L ] 1 [ M ] [ T ] 2 [ Θ ] 1 {\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}} c V P = E P l P 3 Θ P = k B l P 3 = c 9 k B 2 64 π 3 3 G 3 {\displaystyle {c_{V}}_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {c^{9}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}} c V P = E P l P 3 Θ P = k B l P 3 = c 9 k B 2 3 G 3 {\displaystyle {c_{V}}_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {c^{9}k_{\text{B}}^{2}}{\hbar ^{3}G^{3}}}}} 7 , 340723 10 79 J m 3 K {\displaystyle 7,340723\cdot 10^{79}{\frac {\mathrm {J} }{m^{3}\cdot \mathrm {K} }}} 3 , 270044 10 81 J m 3 K {\displaystyle 3,270044\cdot 10^{81}{\frac {\mathrm {J} }{m^{3}\cdot \mathrm {K} }}}
Resistenza termica di Planck Resistenza termica [ L ] 2 [ M ] 1 [ T ] 3 [ Θ ] {\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]} Ω Θ P = Θ P P P = t P k B = 4 π G c 5 k B 2 {\displaystyle {\Omega _{\Theta }}_{\text{P}}={\frac {\Theta _{\text{P}}}{P_{\text{P}}}}={\frac {t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {4\pi \hbar G}{c^{5}k_{\text{B}}^{2}}}}} Ω Θ P = Θ P P P = t P k B = G c 5 k B 2 {\displaystyle {\Omega _{\Theta }}_{\text{P}}={\frac {\Theta _{\text{P}}}{P_{\text{P}}}}={\frac {t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\hbar G}{c^{5}k_{\text{B}}^{2}}}}} 1 , 384238 10 20 K W {\displaystyle 1,384238\cdot 10^{-20}{\frac {\mathrm {K} }{\mathrm {W} }}} 3 , 904864 10 21 K W {\displaystyle 3,904864\cdot 10^{-21}{\frac {\mathrm {K} }{\mathrm {W} }}}
Conduttanza termica di Planck Conduttanza termica [ L ] 2 [ M ] [ T ] 3 [ Θ ] 1 {\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}} G Θ P = k B t P = c 5 k B 2 4 π G A P 2 π α {\displaystyle {G_{\Theta }}_{\text{P}}={\frac {k_{\text{B}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}k_{\text{B}}^{2}}{4\pi \hbar G}}}\simeq {\bf {A}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}} G Θ P = 1 Ω Θ P = k B t P = c 5 k B 2 G {\displaystyle {G_{\Theta }}_{\text{P}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}}}={\frac {k_{\text{B}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}k_{\text{B}}^{2}}{\hbar G}}}} 7 , 224190 10 19 W K {\displaystyle 7,224190\cdot 10^{19}{\frac {\mathrm {W} }{\mathrm {K} }}} 2 , 560909 10 20 W K {\displaystyle 2,560909\cdot 10^{20}{\frac {\mathrm {W} }{\mathrm {K} }}}
Resistività termica di Planck Resistività termica

[ L ] 1 [ M ] 1 [ T ] 3 [ Θ ] {\displaystyle \left[L\right]^{-1}\left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]}

1 λ Θ P = Ω Θ P l P = l P t P k B = 16 π 2 2 G 2 c 8 k B 2 {\displaystyle {\frac {1}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}={\frac {l_{\text{P}}t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {16\pi ^{2}\hbar ^{2}G^{2}}{c^{8}k_{\text{B}}^{2}}}}} 1 λ Θ P = Ω Θ P l P = l P t P k B = 2 G 2 c 8 k B 2 {\displaystyle {\frac {1}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}\,l_{\text{P}}={\frac {l_{\text{P}}t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\hbar ^{2}G^{2}}{c^{8}k_{\text{B}}^{2}}}}} 7 , 930958 10 55 m K W {\displaystyle 7,930958\cdot 10^{-55}{\frac {m\cdot \mathrm {K} }{\mathrm {W} }}} 6 , 311256 10 56 m K W {\displaystyle 6,311256\cdot 10^{-56}{\frac {m\cdot \mathrm {K} }{\mathrm {W} }}}
Conducibilità termica di Planck Conducibilità termica

[ L ] [ M ] [ T ] 3 [ Θ ] 1 {\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}}

λ Θ P = P P l P Θ P = c 8 k B 2 16 π 2 2 G 2 B P 2 π α {\displaystyle {\lambda _{\Theta }}_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}\Theta _{\text{P}}}}={\sqrt {\frac {c^{8}k_{\text{B}}^{2}}{16\pi ^{2}\hbar ^{2}G^{2}}}}\simeq {\bf {B}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}} λ Θ P = P P l P Θ P = c 8 k B 2 2 G 2 B P 2 π α {\displaystyle {\lambda _{\Theta }}_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}\Theta _{\text{P}}}}={\sqrt {\frac {c^{8}k_{\text{B}}^{2}}{\hbar ^{2}G^{2}}}}\simeq {\bf {B}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}} 1 , 260881 10 54 W m K {\displaystyle 1,260881\cdot 10^{54}{\frac {\mathrm {W} }{m\cdot \mathrm {K} }}} 1 , 584471 10 55 W m K {\displaystyle 1,584471\cdot 10^{55}{\frac {\mathrm {W} }{m\cdot \mathrm {K} }}}
Isolatore termico di Planck Isolatore termico [ M ] 1 [ T ] 3 [ Θ ] {\displaystyle \left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]} l P λ Θ P = Ω Θ P l P 2 = 64 π 3 3 G 3 c 11 k B 2 {\displaystyle {\frac {l_{\text{P}}}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {64\pi ^{3}\hbar ^{3}G^{3}}{c^{11}k_{\text{B}}^{2}}}}} l P λ Θ P = Ω Θ P l P 2 = 3 G 3 c 11 k B 2 {\displaystyle {\frac {l_{\text{P}}}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {\hbar ^{3}G^{3}}{c^{11}k_{\text{B}}^{2}}}}} 4 , 54402 10 89 m 2 K W {\displaystyle 4,54402\cdot 10^{-89}{\frac {m^{2}\cdot \mathrm {K} }{\mathrm {W} }}} 1 , 02006 10 90 m 2 K W {\displaystyle 1,02006\cdot 10^{-90}{\frac {m^{2}\cdot \mathrm {K} }{\mathrm {W} }}}
Trasmittanza termica di Planck Trasmittanza termica [ M ] [ T ] 3 [ Θ ] 1 {\displaystyle \left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}} λ Θ P l P = 1 Ω Θ P l P 2 = c 11 k B 2 64 π 3 3 G 3 {\displaystyle {\frac {{\lambda _{\Theta }}_{\text{P}}}{l_{\text{P}}}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{11}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}} λ Θ P l P = 1 Ω Θ P l P 2 = c 11 k B 2 64 π 3 3 G 3 {\displaystyle {\frac {{\lambda _{\Theta }}_{\text{P}}}{l_{\text{P}}}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{11}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}} 2 , 200693 10 88 W m 2 K {\displaystyle 2,200693\cdot 10^{88}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} }}} 9 , 803346 10 89 W m 2 K {\displaystyle 9,803346\cdot 10^{89}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} }}}
Flusso termico di Planck Intensità luminosa [ M ] [ T ] 3 {\displaystyle \left[M\right]\left[T\right]^{-3}} ϕ q P = λ Θ P Θ P = i P = P P l P 2 = c 8 16 π 2 G 2 {\displaystyle {\phi _{q}}_{\text{P}}={\lambda _{\Theta }}_{\text{P}}\Theta _{\text{P}}=i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{16\pi ^{2}\hbar G^{2}}}} ϕ q P = λ Θ P Θ P = i P = P P l P 2 = c 8 G 2 {\displaystyle {\phi _{q}}_{\text{P}}={\lambda _{\Theta }}_{\text{P}}\Theta _{\text{P}}=i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{\hbar G^{2}}}} 8 , 795455 10 119 W m 2 {\displaystyle 8,795455\cdot 10^{119}{\frac {\mathrm {W} }{m^{2}}}} 1 , 388923 10 122 W m 2 {\displaystyle 1,388923\cdot 10^{122}{\frac {\mathrm {W} }{m^{2}}}}
Località di Planck Seconda radiazione di costante [ L ] [ Θ ] {\displaystyle \left[L\right]\left[\Theta \right]} C 2 P = Θ P l P = C 2 2 π = h c 2 π k B = E P l P k B {\displaystyle C_{2_{\text{P}}}={\Theta _{\text{P}}l_{\text{P}}}={\frac {C_{2}}{2\pi }}={\frac {hc}{2\pi \,{k}_{\text{B}}}}={\frac {{E}_{\text{P}}{l}_{\text{P}}}{{k}_{\text{B}}}}} 0 , 002289885 K m {\displaystyle 0,002289885\;\mathrm {K} \cdot m}
Località di Planck con costante di struttura fine Seconda radiazione di costante [ L ] [ Θ ] {\displaystyle \left[L\right]\left[\Theta \right]} C α P = 2 π Θ P l P α = C 2 α = h c α k B = 2 π E P l P α k B q P c 2 {\displaystyle C_{\alpha _{\text{P}}}={\frac {2\pi \Theta _{\text{P}}l_{\text{P}}}{\sqrt {\alpha }}}={\frac {C_{2}}{\sqrt {\alpha }}}={\frac {hc}{{\sqrt {\alpha }}{k}_{\text{B}}}}={\frac {2\pi {E}_{\text{P}}{l}_{\text{P}}}{{\sqrt {\alpha }}{k}_{\text{B}}}}\simeq q_{\text{P}}c^{2}} 0 , 168427 K m {\displaystyle 0,168427\;\mathrm {K} \cdot m}
Costante di Stefan-Boltzmann di Planck Costante di proporzionalità [ M ] [ T ] 3 [ Θ ] 4 {\displaystyle \left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-4}} σ σ P = P P l P 2 Θ P 4 = k B 4 3 c 2 = 16 π 4 c 2 C 2 4 {\displaystyle \sigma _{_{\sigma }{\text{P}}}={\frac {{P}_{\text{P}}}{{l}_{\text{P}}^{2}{\Theta }_{\text{P}}^{4}}}={\frac {{k}_{\text{B}}^{4}}{{\hbar }^{3}{c}^{2}}}={\frac {{16}\pi ^{4}\hbar {c}^{2}}{C_{2}^{4}}}} 3 , 447174 10 7 W m 2 K 4 {\displaystyle 3,447174\cdot 10^{-7}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} ^{4}}}}
Proprietà radioattive
Attività specifica di Planck Attività specifica [ T ] 1 {\displaystyle \left[T\right]^{-1}} 1 t P = c 5 4 π G {\displaystyle {\frac {1}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{4\pi \hbar G}}}} 1 t P = c 5 G {\displaystyle {\frac {1}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{\hbar G}}}} 5 , 232458 10 42 B q {\displaystyle 5,232458\cdot 10^{42}\mathrm {Bq} } 1 , 854858 10 43 B q {\displaystyle 1,854858\cdot 10^{43}\mathrm {Bq} }
Esposizione radioattiva di Planck Radiazioni ionizzanti [ M ] 1 [ Q ] {\displaystyle \left[M\right]^{-1}\left[Q\right]} q r s = q P m P = 2 π r s μ 0 = G k e = 4 π ε 0 G {\displaystyle q_{r_{\text{s}}}={\frac {q_{\text{P}}}{m_{\text{P}}}}={\sqrt {\frac {2\pi {r_{\text{s}}}}{\mu _{0}}}}={\sqrt {\frac {G}{k_{e}}}}={\sqrt {4\pi \varepsilon _{0}G}}} 8 , 617 518 10 11 C k g {\displaystyle 8,617\;518\cdot 10^{-11}\;{\frac {\mathrm {C} }{kg}}}
Potenziale gravitazionale di Planck calorie specifiche [ L ] 2 [ T ] 2 {\displaystyle \left[L\right]^{2}\left[T\right]^{-2}} Φ G P = E P m P = c 2 {\displaystyle {\Phi _{_{G}}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}}}=c^{2}} 89.875.517.873.681.764 J k g {\displaystyle 89.875.517.873.681.764\;{\frac {\mathrm {J} }{kg}}}
Dose assorbita di Planck Dose assorbita [ L ] 2 [ T ] 2 {\displaystyle \left[L\right]^{2}\left[T\right]^{-2}} Φ G P = E P m P = c 2 {\displaystyle {\Phi _{_{G}}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}}}=c^{2}} 8 , 987552 10 16 G y {\displaystyle 8,987552\cdot 10^{16}\;\mathrm {Gy} }
Velocità di dose assorbita di Planck Velocità di dose assorbita [ L ] 2 [ T ] 3 {\displaystyle \left[L\right]^{2}\left[T\right]^{-3}} Φ G P t P = c 9 4 π G {\displaystyle {\frac {{\Phi _{_{G}}}_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{9}}{4\pi \hbar G}}}} Φ G P t P = c 9 G {\displaystyle {\frac {{\Phi _{_{G}}}_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{9}}{\hbar G}}}} 4 , 702700 10 59 G y s {\displaystyle 4,702700\cdot 10^{59}\;{\frac {\mathrm {Gy} }{s}}} 1 , 667064 10 60 G y s {\displaystyle 1,667064\cdot 10^{60}\;{\frac {\mathrm {Gy} }{s}}}
Proprietà dei buchi neri
Massa lineare di Planck Massa lineare

[ M ] [ L ] 1 {\displaystyle \left[M\right]\left[L\right]^{-1}}

l r s 1 = m P l P = 2 4 π r s = c 2 4 π G {\displaystyle {l_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2}{4\pi r_{s}}}={\frac {c^{2}}{4\pi G}}} l r s 1 = m P l P = 2 r s = c 2 G {\displaystyle {l_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2}{r_{s}}}={\frac {c^{2}}{G}}} 1 , 071583 10 26 k g m {\displaystyle 1,071583\cdot 10^{26}\;{\frac {kg}{m}}} 1 , 346591 10 27 k g m {\displaystyle 1,346591\cdot 10^{27}\;{\frac {kg}{m}}}
Impedenza meccanica di Planck Impedenza meccanica [ M ] [ L ] 1 {\displaystyle \left[M\right]\left[L\right]^{-1}} t r s 1 = m P t P = 2 c 4 π r s = c 3 4 π G {\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {2c}{4\pi r_{s}}}={\frac {c^{3}}{4\pi G}}} t r s 1 = m P l P = 2 c r s = c 3 G {\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2c}{r_{s}}}={\frac {c^{3}}{G}}} 3 , 212525 10 34 k g s {\displaystyle 3,212525\cdot 10^{34}\;{\frac {kg}{s}}} 4 , 036978 10 35 k g s {\displaystyle 4,036978\cdot 10^{35}\;{\frac {kg}{s}}}
Gravità di superficie Gravità di superficie

[ L ] [ M ] [ T ] 2 {\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-2}}

a r s 1 4 M F P m r s = m P c t P = c 4 4 π G {\displaystyle {a_{r}}_{\text{s}}\equiv {\frac {1}{4M}}\equiv {\frac {F_{\text{P}}}{{m_{r}}_{\text{s}}}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{4\pi G}}} a r s 1 4 M F P m r s = m P c t P = c 4 G {\displaystyle {a_{r}}_{\text{s}}\equiv {\frac {1}{4M}}\equiv {\frac {F_{\text{P}}}{{m_{r}}_{\text{s}}}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{G}}} 9 , 630908 10 42 k g m s 2 {\displaystyle 9,630908\cdot 10^{42}{\frac {kg\cdot m}{s^{2}}}} 1 , 210256 10 44 k g m s 2 {\displaystyle 1,210256\cdot 10^{44}{\frac {kg\cdot m}{s^{2}}}}
Costante di accoppiamento di Planck Teoria dell'informazione

(adimensionale)

α G P = m r s 2 = ( m P m P ) 2 = 4 π G m P 2 c {\displaystyle {\alpha _{G}}_{\text{P}}={m_{r}}_{\text{s}}^{2}=\left({\frac {m_{\text{P}}}{m_{\text{P}}}}\right)^{2}={\frac {4\pi Gm_{\text{P}}^{2}}{\hbar c}}} α G P = m r s 2 = ( m P m P ) 2 = G m P 2 c {\displaystyle {\alpha _{G}}_{\text{P}}={m_{r}}_{\text{s}}^{2}=\left({\frac {m_{\text{P}}}{m_{\text{P}}}}\right)^{2}={\frac {Gm_{\text{P}}^{2}}{\hbar c}}} 1 1
Limite di Bekenstein di Planck[6][7][8] Teoria dell'informazione

(adimensionale)

I b i t s P 2 π α G P log [ 2 ] = 2 π l P E P c {\displaystyle {I_{_{bits}}}_{\text{P}}\leq {\frac {2\pi {\alpha _{G}}_{\text{P}}}{\log[2]}}={\frac {2\pi l_{\text{P}}E_{\text{P}}}{\hbar c}}} 9 , 064720 b i t s {\displaystyle 9,064720\ldots \mathrm {bits} } 2 3 , 18 {\displaystyle \approx 2^{3,18}}

1 , 133 b y t e s {\displaystyle \approx 1,133\,\mathrm {bytes} }

Rapporto massa-massa di Planck Teoria dell'informazione

(adimensionale)

m r s = m P m P {\displaystyle {m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}} 1 {\displaystyle 1}
Unità di Planck Unita di Planck

(adimensionale)

α G P = m r s = m P m P {\displaystyle {\sqrt {{\alpha _{G}}_{\text{P}}}}={m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}} α G P = m r s = m P m P {\displaystyle {\sqrt {{\alpha _{G}}_{\text{P}}}}={m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}} 1 {\displaystyle 1} 1 {\displaystyle 1}

Nota: k e {\displaystyle k_{e}} è la costante di Coulomb, μ 0 {\displaystyle \mu _{0}} è la permeabilità nel vuoto, Z 0 {\displaystyle Z_{0}} è l'impedenza di spazio libero, Y 0 {\displaystyle Y_{0}} è l'ammissione di spazio libero, R {\displaystyle R} è la costante dei gas.

Nota: N A {\displaystyle N_{\text{A}}} è la costante di Avogadro, anch'essa normalizzata a 1 {\displaystyle 1} in entrambe le versioni di unità di Planck.

Note

  1. ^ (EN) Units, natural units and metrology, su The Spectrum of Riemannium. URL consultato il 22 marzo 2020.
  2. ^ www.espenhaug.com, su espenhaug.com. URL consultato il 22 marzo 2020.
  3. ^ Derived Planck Units - CODATA 2014 (PNG), su upload.wikimedia.org.
  4. ^ Alexander Bolonkin, Universe. Relations Between Time, Matter, Volume, Distance and Energy. Rolling Space, Time, Matter Into Point. URL consultato il 22 marzo 2020.
  5. ^ Relations between Charge, Time, Matter, Volume, Distance, and Energy (PDF), su pdfs.semanticscholar.org.
  6. ^ (EN) Los Alamos National Laboratory, Operated by Los Alamos National Security, LLC, for the U. S. Department of Energy, System Unavailable, su lanl.gov. URL consultato il 5 aprile 2020.
  7. ^ (EN) Jacob D. Bekenstein, Bekenstein bound, in Scholarpedia, vol. 3, n. 10, 31 ottobre 2008, p. 7374, DOI:10.4249/scholarpedia.7374. URL consultato il 5 aprile 2020.
  8. ^ (EN) Jacob D. Bekenstein, Bekenstein-Hawking entropy, in Scholarpedia, vol. 3, n. 10, 31 ottobre 2008, p. 7375, DOI:10.4249/scholarpedia.7375. URL consultato il 5 aprile 2020.
  Portale Fisica: accedi alle voci di Wikipedia che trattano di fisica