Hővezetés

A hővezetés vagy konduktív hőátadás a hőátadás olyan formája, amely a szilárd vagy nyugalomban lévő (nem áramló) folyékony vagy légnemű halmazállapotú rendszerekben, hőmérséklet-különbség hatására jön létre. A hőáramlástól (konvektív hőátadás) abban tér el, hogy nem történik anyagáramlás, hanem a hőátadás a belső energia részecskéről részecskére való átadásával történik.

Hővezetés a termodinamika második főtétele szerint önként mindig a nagyobb hőmérsékletű hely felől a kisebb hőmérsékletű hely felé történik, azaz a hőmérsékleti gradiens irányában. Az energiamegmaradás törvénye értelmében hő a hővezetés során sem tűnhet el vagy semmisülhet meg.

A hővezetés transzportjelenség

Tapasztalatból ismerjük, hogy ha a rendszeren belül például a hőmérséklet pontról pontra nem azonos, akkor önként olyan folyamat indul el, hogy a hőmérséklet kiegyenlítődjék. Hő áramlik a nagyobb hőmérsékletű helyről a kisebb hőmérsékletű felé. E transzportjelenség neve a hővezetés. Transzportjelenség fogalmán a rendszer valamely extenzív fizikai mennyiségének a tér egyik részéből egy másik részébe történő eljutását, szállítását értjük. A hővezetés, mint vezetéssel létrejövő energiatranszport, a hőterjedés olyan formája, amelynél a terjedés irányában makroszkopikus anyagáramlás nincs.

Áram, hajtóerő, fluxus

A hőtranszport (vezetés, szállítás) során tehát Q hőenergia (extenzív fizikai mennyiség, tömegtől függő)[* 1] árama alakul ki a hőmérséklet (intenzív fizikai mennyiség) negatív gradiensének, mint termodinamikai „hajtóerőnek” a hatására.

Hőáram ( I Q {\displaystyle I_{Q}} ) fogalma alatt valamely hővezető anyagban, adott keresztmetszeténél a hőmennyiség rövid d t {\displaystyle \mathrm {d} t} időegységre eső megváltozását értjük. Ha ezt az áramlás keresztmetszetére ( d A {\displaystyle \mathrm {d} A} ) – azaz keresztmetszetegységre – vonatkoztatjuk, a hőáramsűrűséget ( J Q {\displaystyle J_{Q}} ) kapjuk. A különféle áramsűrűségeknek gyakran használatos másik megnevezése a fluxus.

Vagyis a hőáram és a hőáram-sűrűség (hőfluxus) definíció szerint:

I Q = d Q d t   {\displaystyle I_{Q}={\frac {\mathrm {d} Q}{\mathrm {d} t}}\ }
j Q = I Q d A = Q A t   . {\displaystyle j_{Q}={\frac {I_{Q}}{\mathrm {d} A}}={\frac {\partial Q}{\partial A\partial t}}\ .}

Fourier-törvény

Jean Baptiste Joseph Fourier (1768-1830) francia matematikus és fizikus

Két, párhuzamos, egymástól dx távolságra lévő, dT hőmérséklet-különbségű szilárd falfelület között kialakuló hőáramsűrűség nagyságát matematikailag elsőként Jean Baptiste Joseph Fourier fogalmazta meg 1822-ben hosszú vékony rúdra, melynél a jelenség egydimenziós. Az egyenlet az egydimenziós stacionárius hővezetés alapegyenlete:

j Q = λ d T d x . {\displaystyle j_{Q}=-\lambda {\frac {\mathrm {d} T}{\mathrm {d} x}}.}

Általános, térbeli test és térbeli hőmérsékleteloszlás esetében:

j Q = λ | g r a d ( T ) |   . {\displaystyle j_{Q}=-\lambda \cdot |\mathrm {grad} (T)|\ .}

A kifejezésben λ az illető anyag hővezetési tényezője, W/(m·K) egységben.

Véges változás esetén, a kialakuló hőáramsűrűség egyenesen arányos a hőmérséklet-különbséggel és a szilárd test anyagi minőségére jellemző hővezetési tényezővel és fordítva arányos a távolsággal:

j Q = λ x ( T 1 T 2 )   . {\displaystyle j_{Q}={\frac {\lambda }{x}}(T_{1}-T_{2})\ .}

Megjegyzések

  1. Az anyag mennyiségét sokféle módon megmérhetjük. Például gázok esetében nem a tömegükkel, hanem térfogatukkal mérjük meg. A kémiában az anyagmennyiségre vonatkoztatjuk a hőtranszportot

Források

  • Pattantyús Gépész- és Villamosmérnökök Kézikönyve 2. kötet. Műszaki Könyvkiadó, Budapest, 1961.
  • dr. Harmata András: Termodinamika műszakiaknak. Műszaki Könyvkiadó, Budapest, 1982. ISBN 963-10-4467-X
  • M. A. Mihejev: A hőátadás gyakorlati számításának alapjai, Tankönyvkiadó, 1990. (Ford.: Dr. Horváth Csaba) ISBN 963-18-3004-7

Kapcsolódó szócikkek